Releasing the Inner Inhibition for Axon Regeneration
نویسندگان
چکیده
The adult mammalian central nervous system exhibits restricted regenerative potential. Chen et al. (2011) and El Bejjani and Hammarlund (2012) used Caenorhabditis elegans to uncover intrinsic factors that inhibit regeneration of axotomized mature neurons, opening avenues for potential therapeutics.
منابع مشابه
The mTORC1 Effectors S6K1 and 4E-BP Play Different Roles in CNS Axon Regeneration
Using mouse optic nerve (ON) crush as a CNS injury model, we and others have found that activation of the mammalian target of rapamycin complex 1 (mTORC1) in mature retinal ganglion cells by deletion of the negative regulators, phosphatase and tensin homologue (PTEN), and tuberous sclerosis 1 promotes ON regeneration. mTORC1 activation inhibits eukaryotic translation initiation factor 4E-bindin...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملmTORC1 is necessary but mTORC2 and GSK3β are inhibitory for AKT3-induced axon regeneration in the central nervous system
Injured mature CNS axons do not regenerate in mammals. Deletion of PTEN, the negative regulator of PI3K, induces CNS axon regeneration through the activation of PI3K-mTOR signaling. We have conducted an extensive molecular dissection of the cross-regulating mechanisms in axon regeneration that involve the downstream effectors of PI3K, AKT and the two mTOR complexes (mTORC1 and mTORC2). We found...
متن کاملFcγ Receptor-Mediated Inflammation Inhibits Axon Regeneration
Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecul...
متن کاملEngineering neuronal growth cones to promote axon regeneration over inhibitory molecules.
Neurons in the central nervous system (CNS) fail to regenerate axons after injuries due to the diminished intrinsic axon growth capacity of mature neurons and the hostile extrinsic environment composed of a milieu of inhibitory factors. Recent studies revealed that targeting a particular group of extracellular inhibitory factors is insufficient to trigger long-distance axon regeneration. Instea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 73 شماره
صفحات -
تاریخ انتشار 2012